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A new synthetic route to (�)-cassine via asymmetric
aminohydroxylation
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Abstract—(�)-Cassine has been synthesized by a new route, asymmetric aminohydroxylation followed by reductive amination.
� 2007 Elsevier Ltd. All rights reserved.
2,6-Disubstituted piperidin-3-ol alkaloids, displaying
attractive structural arrangement, have shown interest-
ing pharmacological activities.1 For example, (�)-cas-
sine 1 has antimicrobial activity against Staphylococcus
aureus,2 prosopinine 2 shows analgesic, anesthetic, and
antibiotic activities,3 and (�)-spectaline 3 offers cyto-
toxic activity (Fig. 1).4 (�)-Cassine 1 was isolated from
Cassia excelsa and the absolute configuration was con-
firmed by Rice in 1966,5 and until recently several results
of synthetic efforts for 1 have been published.6

As we were interested in the arrangement of its ring
skeleton, we planned to achieve a new synthesis of 1
via asymmetric aminohydroxylation (AA) and reductive
amination reaction. Several asymmetric syntheses of
alkaloids based on AA have been reported7 and the
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reductive amination reaction has been applied for the
synthesis of several alkaloid compounds in our group.8

We anticipated that AA reaction on 5 would afford 4
with regio- and enantioselectivity9 and compound 5
could be prepared from the commercially available 11-
bromo-1-undecanol through conventional carbon exten-
sion and oxidation reactions (Fig. 2).

To perceive chemical features of the AA reaction on the
substrate and the products, first we tried to use a simple
substrate, 5-heptene-2-one 6. Compound 6 was readily
prepared from trans-4-hexenol via a three step sequence
(oxidation using tetrapropylammonium perruthenate10

to aldehyde, MeMgBr addition, and Jones oxidation)
in 61% yield. To find out an optimum condition for
the regioselective AA reaction on 6, we tried several con-
ditions by varing ligands and solvents,9b–d and obtained
7 and 8 in about 1:1 ratio and 77% yield (Scheme 1). The
separated products 7 and 8 were found to be mixtures of
about 2:1 isomers, which was assumed to be in equlib-
rium between a and b, respectively.

To select the right intermediate for cyclization to the
desired piperidine ring, we subjected 7 and 8 to
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hydrogenation condition, respectively. The reductive
conditions showed that compounds 7 were the desired
intermediates to afford the known 3-hydroxypiperidine
9,11 which was protected by benzyloxycarbonyl chloride
and purified further to afford 10, ½a�24

D 16.8 (c 1.0,
MeOH). However, the same reaction condition applied
for compounds 8 surprisingly provided the starting mix-
ture 8 back. We assume that the deprotected intermedi-
ate of 8 should exist as only a hemi-ketal form, and
therefore neither imine formation nor subsequent reduc-
tive amination proceeded, and the following protection
reaction afforded 8 back. Protection of hydroxyl group
of 7a and 7b by methoxymethyl chloride yielded conver-
gently 11 in 64% yield and the optical purity of 11 was
determined to be 84% ee by chiral HPLC (Scheme 2).12

On the basis of the result from the model study, we
planned to prepare the proposed template 5 required
for the natural product. Commercially available 11-bro-
mo-1-undecanol was oxidized using PCC to the corre-
sponding aldehyde 12 in 80% yield, and the aldehyde
was converted to 13 under Wittig reaction with triphen-
ylphosphoranylidene methane in 75% yield. Compound
13 was treated with fresh magnesium in the presence of
catalytic amount of dibromoethane to make Grignard
reagent and the resulting reagent was added to a solu-
tion of trans-4-hexenaldehyde in ether to provide 14 in
47% yield. Jones oxidation of 14 provided ketone 15 in
86% yield and the Wacker oxidation13 of the resulting
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diene effectively yielded diketone 5 in 65% yield (Scheme
3).

AA reaction of 5 under the optimized condition afforded
16 in 43% yield and 17 in 19% yield, respectively. Unlike
7 or 8, the products existed as 16a and 17a forms more
than 5:1 ratios, respectively. Further characterization of
the derivatives was performed after protection with a
MOM group to 16c and 17c, and the optical purity
was detected to be 86% ee and 82% ee by chiral HPLC,
respectively. Although we cannot explain the better
regioselectivity of AA of 5 than the model substrate
and the difference in the equilibrium ratios of isomers
16 and 17, we assume the longer chain should play cer-
tain steric roles on selectivity and equilibrium. The final
hydrogenation of 16 provided (�)-cassine in 85% yield.
The spectral data (1H and 13C NMR, IR, and MS) were
identical to those reported: ½a�24

D �0.50 (c 0.70, EtOH)
[lit. ½a�25

D �0.6 (c 8.0, EtOH)]; mp 55–57 �C [lit. 54-
57 �C] (Scheme 4).

In conclusion, we described a new practical synthetic
route to (�)-cassine using AA reaction followed by
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reductive amination. A room for improvement in the
regio- and enantioselectivity has been left, though, the
concise route suggested a practical synthetic strategy
of the compound. Further application of this reaction
for related alkaloid compounds is under study.
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